Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.207
Filtrar
1.
BMC Plant Biol ; 24(1): 291, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632518

RESUMO

BACKGROUND: Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear. RESULTS: A genome-wide association study was employed to detect QTLs controlling the immune response to LR of rye. A mapping population, G38A, was constructed by crossing two inbred lines: 723 (susceptible to LR) and JKI-NIL-Pr3 (a donor of the LR resistance gene Pr3). For genotyping, SNP-DArT and silico-DArT markers were used. Resistance phenotyping was conducted by visual assessment of the infection severity in detached leaf segments inoculated with two isolates of Puccinia recondita f. sp. secalis, namely, 60/17/2.1 (isolate S) in the main experiment and 86/n/2.1_5x (isolate N) in the validation experiment, at 10 and 17 days post-infection (dpi), respectively. In total, 42,773 SNP-DArT and 105,866 silico-DArT markers were included in the main analysis including isolate S, of which 129 and 140 SNP-DArTs and 767 and 776 silico-DArTs were significantly associated (p ≤ 0.001; - log10(p) ≥ 3.0) with the immune response to LR at 10 and 17 dpi, respectively. Most significant markers were mapped to chromosome 1R. The number of common markers from both systems and at both time points occupying common chromosomal positions was 37, of which 21 were positioned in genes, comprising 18 markers located in exons and three in introns. This gene pool included genes encoding proteins with a known function in response to LR (e.g., a NBS-LRR disease resistance protein-like protein and carboxyl-terminal peptidase). CONCLUSION: This study has expanded and supplemented existing knowledge of the genetic basis of rye resistance to LR by (1) detecting two QTLs associated with the LR immune response of rye, of which one located on the long arm of chromosome 1R is newly detected, (2) assigning hundreds of markers significantly associated with the immune response to LR to genes in the 'Lo7' genome, and (3) predicting the potential translational effects of polymorphisms of SNP-DArT markers located within protein-coding genes.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Secale/genética , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
2.
Genes (Basel) ; 15(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540334

RESUMO

Leaf rust (LR) caused by Puccinia recondita f. sp. secalis (Prs) is a highly destructive disease in rye. However, the genetic mechanisms underlying the rye immune response to this disease remain relatively uncharacterised. In this study, we analysed the expression of four genes in 12 rye inbred lines inoculated with Prs at 20 and 36 h post-treatment (hpt): DXS (1-deoxy-D-xylulose 5-phosphate synthase), Glu (ß-1,3-glucanase), GT (UDP-glycosyltransferase) and PR-1 (pathogenesis-related protein 1). The RT-qPCR analysis revealed the upregulated expression of the four genes in response to Prs in all inbred lines and at both time-points. The gene expression data were supported by microscopic and macroscopic examinations, which revealed that eight lines were susceptible to LR and four lines were highly resistant to LR. A relationship between the infection profiles and the expression of the analysed genes was observed: in the resistant lines, the expression level fold changes were usually higher at 20 hpt than at 36 hpt, while the opposite trend was observed in the susceptible lines. The study results indicate that DXS, Glu, GT and PR-1 may encode proteins crucial for the rye defence response to the LR pathogen.


Assuntos
Basidiomycota , Secale , Secale/genética , Basidiomycota/genética , Genes de Plantas , Genótipo , Doenças das Plantas/genética
3.
J Environ Manage ; 355: 120431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457890

RESUMO

Cover crops (CC) can improve phosphorus (P) cycling by reducing water related P losses and contributing to P nutrition of a rotational crop. This is particularly important in claypan soils with freeze-thaw cycles in early spring in the Midwest U.S. This 4-year study (2019-2022) examined the impact of CC monoculture and mix of CC species on P losses from a fertilizer application, and determined the P balance in soil compared to no cover crop (noCC). The CC mix consisted of wheat (Triticum aestivum L.), radish (Raphanus raphanistrum subsp. Sativus), and turnip (Brassica rapa subsp. Rapa) (3xCCmix) in 2019 and 2021 before corn, and cereal rye (Secale cereale L.) was planted as monoculture before soybean in 2020 and 2022. The 3xCCmix had no effect on total phosphorus (TP) and dissolved reactive phosphorus (PO4-P) concentration or load in 2019 and 2021. Cereal rye reduced TP and PO4-P load 70% and 73%, respectively, compared to noCC. The variation in soil moisture, temperature, and net precipitation from fertilizer application until CC termination affected available soil P pools due to variability in CC species P uptake, residue decomposition, and P loss in surface water runoff. Overall, the P budget calculations showed cereal rye had 2.4 kg ha-1 greater P uptake compared to the 3xCCmix species which also reduced P loss in water and had greater differences in soil P status compared to noCC. This study highlights the benefit of CCs in reducing P loss in surface runoff and immobilizing P through plant uptake. However, these effects were minimal with 3xCCmix species and variability in crop residue decomposition from different CC species could affect overall P-soil balance.


Assuntos
Agricultura , Fósforo , Fertilizantes , Solo , Produtos Agrícolas , Grão Comestível , Zea mays , Secale , Água
4.
BMC Plant Biol ; 24(1): 107, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347436

RESUMO

BACKGROUND: Rye (Secale cereale L.) is a cereal crop highly tolerant to environmental stresses, including abiotic and biotic stresses (e.g., fungal diseases). Among these fungal diseases, leaf rust (LR) is a major threat to rye production. Despite extensive research, the genetic basis of the rye immune response to LR remains unclear. RESULTS: An RNA-seq analysis was conducted to examine the immune response of three unrelated rye inbred lines (D33, D39, and L318) infected with compatible and incompatible Puccinia recondita f. sp. secalis (Prs) isolates. In total, 877 unique differentially expressed genes (DEGs) were identified at 20 and 36 h post-treatment (hpt). Most of the DEGs were up-regulated. Two lines (D39 and L318) had more up-regulated genes than down-regulated genes, whereas the opposite trend was observed for line D33. The functional classification of the DEGs helped identify the largest gene groups regulated by LR. Notably, these groups included several DEGs encoding cytochrome P450, receptor-like kinases, methylesterases, pathogenesis-related protein-1, xyloglucan endotransglucosylases/hydrolases, and peroxidases. The metabolomic response was highly conserved among the genotypes, with line D33 displaying the most genotype-specific changes in secondary metabolites. The effect of pathogen compatibility on metabolomic changes was less than the effects of the time-points and genotypes. Accordingly, the secondary metabolome of rye is altered by the recognition of the pathogen rather than by a successful infection. The results of the enrichment analysis of the DEGs and differentially accumulated metabolites (DAMs) reflected the involvement of phenylpropanoid and diterpenoid biosynthesis as well as thiamine metabolism in the rye immune response. CONCLUSION: Our work provides novel insights into the genetic and metabolic responses of rye to LR. Numerous immune response-related DEGs and DAMs were identified, thereby clarifying the mechanisms underlying the rye response to compatible and incompatible Prs isolates during the early stages of LR development. The integration of transcriptomic and metabolomic analyses elucidated the contributions of phenylpropanoid biosynthesis and flavonoid pathways to the rye immune response to Prs. This combined analysis of omics data provides valuable insights relevant for future research conducted to enhance rye resistance to LR.


Assuntos
Basidiomycota , Micoses , Puccinia , Transcriptoma , Secale/genética , Secale/microbiologia , Basidiomycota/fisiologia , Metaboloma , Doenças das Plantas/microbiologia
5.
Sci Data ; 11(1): 200, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351049

RESUMO

Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) affect ecosystem services provisions, but they vary widely due to differences in agronomic practices, soil properties, and climate. Cereal rye (Secale cereale) is the most common winter cover crop in the United States due to its winter hardiness, low seed cost, and high biomass production. We compiled data on cereal rye winter cover crop performance metrics, agronomic practices, and soil properties across the eastern half of the United States. The dataset includes a total of 5,695 cereal rye biomass observations across 208 site-years between 2001-2022 and encompasses a wide range of agronomic, soils, and climate conditions. Cereal rye biomass values had a mean of 3,428 kg ha-1, a median of 2,458 kg ha-1, and a standard deviation of 3,163 kg ha-1. The data can be used for empirical analyses, to calibrate, validate, and evaluate process-based models, and to develop decision support tools for management and policy decisions.


Assuntos
Grão Comestível , Secale , Agricultura , Ecossistema , Grão Comestível/crescimento & desenvolvimento , Estações do Ano , Secale/crescimento & desenvolvimento , Solo , Estados Unidos
6.
J Integr Plant Biol ; 66(4): 638-641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351739

RESUMO

The compact CRISPR/CasΦ2 system provides a complementary genome engineering tool for efficient gene editing including cytosine and adenosine base editing in wheat and rye with high specificity, efficient use of the protospacer-adjacent motif TTN, and an alternative base-editing window.


Assuntos
Edição de Genes , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Secale/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
7.
Yi Chuan ; 46(1): 63-77, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230457

RESUMO

Hexaploid triticale is an important genetic resource for genetic improvement of common wheat, which can broaden the genetic basis of wheat. In order to lay a foundation for the subsequent research and utilization of triticale germplasm materials, the chromosomal genetic characteristics of cross and backcross offspring of hexaploid triticale×hexaploid wheat were investigated in the process of transferring rye chromatin from hexaploid triticale to hexaploid wheat. Hybrid and backcross combinations were prepared with hexaploid triticale 16yin171 as the maternal parent and hexaploid wheat Chuanmai62 as the paternal parent. The chromosomes in root tip cells of F1, BC1F1 and BC1F2 plants were traced and identified non-denaturing florescence in situ hybridization (ND-FISH). The results indicated that the backcross setting rate of hybrid F1 was 2.61%. The transmission frequency of 2R chromosome was the highest in BC1F1 plants while the transmissibility of rye chromosome in BC1F2 plant was 6R>4R>2R, and the 5B-7B wheat translocation in BC1F2 plants showed severe segregation. A total of 24 structural variant chromosomes were observed both in BC1F1 and BC1F2 plants, including chromosome fragments, isochromosomes, translocations, and dicentric chromosomes. In addition, the seed length and 1000-grain weight of some BC1F2 plants were better than that of the hexaploid wheat parent Chuanmai 62. Therefore, multiple backcrosses should be adopted as far as possible to make the rapid recovery of group D chromosomes, ensuring the recovery of fertility in offspring, when hexaploid tritriale is used as a bridge to introduce rye genetic material into common wheat. At the same time, the potential application value of chromosomal structural variation materials should be also concerned.


Assuntos
Triticale , Triticum , Triticum/genética , Triticale/genética , Secale/genética , Cromossomos de Plantas/genética , Hibridização In Situ , Translocação Genética
8.
BMC Genomics ; 25(1): 67, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233751

RESUMO

BACKGROUND: Rye (Secale cereale), one of the drought and cold-tolerant crops, is an important component of the Triticae Dumortier family of Gramineae plants. Basic helix-loop-helix (bHLH), an important family of transcription factors, has played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, no systemic analysis of the bHLH transcription factor family has yet been reported in rye. RESULTS: In this study, 220 bHLH genes in S. cereale (ScbHLHs) were identified and named based on the chromosomal location. The evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events in these ScbHLH genes are systematically analyzed. These 220 ScbHLH members are divided into 21 subfamilies and one unclassified gene. Throughout evolution, the subfamilies 5, 9, and 18 may have experienced stronger expansion. The segmental duplications may have contributed significantly to the expansion of the bHLH family. To systematically analyze the evolutionary relationships of the bHLH family in different plants, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. Finally, the gene expression response characteristics of 22 ScbHLH genes in various biological processes and stress responses were analyzed. Some candidate genes, such as ScbHLH11, ScbHLH48, and ScbHLH172, related to tissue developments and environmental stresses were screened. CONCLUSIONS: The results indicate that these ScbHLH genes exhibit characteristic expression in different tissues, grain development stages, and stress treatments. These findings provided a basis for a comprehensive understanding of the bHLH family in rye.


Assuntos
Genoma de Planta , Secale , Secale/genética , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
9.
BMC Plant Biol ; 24(1): 46, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216860

RESUMO

BACKGROUND: The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS: In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS: We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.


Assuntos
Proteínas de Plantas , Secale , Secale/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas
10.
J Environ Qual ; 53(1): 90-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37940131

RESUMO

Splitting fertilizer nitrogen (N) applications and using cover crops are management strategies to reduce nitrate in tile drainage water. We investigated split fertilizer N applications to corn (Zea mays L.) on crop yields and tile nitrate loss in both corn and soybean (Glycine max L.) in rotation from 2016 through 2019. We evaluated the inclusion of cover crops in a split-N treatment. Fertilizer N treatments included 100% in the fall; 50% in the fall + 25% at planting + 25% at side-dress; 100% as spring preplant; 75% as spring preplant (reduced N rate); 50% as spring preplant + 50% at side-dress; and 50% as spring preplant + 50% at side-dress with a cover crop. We did not find significant differences between split and single full rate N application treatments for corn yields or tile nitrate loss; however, the reduced N rate treatment significantly decreased corn yield by 10%. Cumulative tile nitrate losses (over four seasons) ranged from 115 kg ha-1 for all of the N in the fall to 65 kg ha-1 for 50% as spring preplant + 50% at side-dress with a cover crop, a decrease of 43%. Tile nitrate loss responded similarly to (corn) N treatments under both corn and soybean, with 64% of the loss under corn and 36% under soybean. Our results suggest that decreasing the fertilizer N rate may impact corn yield more than nitrate loss, while split fertilizer N application with a cover crop has potential to reduce tile nitrate loss without decreasing crop yield.


Assuntos
Zea mays , Nitratos/análise , Agricultura/métodos , Secale , Fertilizantes/análise , Grão Comestível/química , Nitrogênio/análise , Produtos Agrícolas , Solo
11.
New Phytol ; 241(2): 607-622, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897058

RESUMO

The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.


Assuntos
Retroelementos , Secale , Retroelementos/genética , Secale/genética , Melhoramento Vegetal , Cromossomos de Plantas/genética , Triticum/genética , Centrômero/genética , Translocação Genética
12.
J Environ Qual ; 53(1): 66-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37889790

RESUMO

Fall-planted cover crop (CC) within a continuous corn (Zea mays L.) system offers potential agroecosystem benefits, including mitigating the impacts of increased temperature and variability in precipitation patterns. A long-term simulation using the Decision Support System for Agrotechnology Transfer model was made to assess the effects of cereal rye (Secale cereale L.) on no-till continuous corn yield and soil properties under historical (1991-2020) and projected climate (2041-2070) in eastern Nebraska. Local weather data during the historical period were used, while climate change projections were based on the Canadian Earth System Model 2 dynamically downscaled using the Canadian Centre for Climate Modelling and Analysis Regional Climate Model 4 under two representative concentration pathways (RCP), namely, RCP4.5 and RCP8.5. Simulations results indicated that CC impacts on corn yield were nonsignificant under historical and climate change conditions. Climate change created favorable conditions for CC growth, resulting in an increase in biomass. CC reduced N leaching under climate change scenarios compared to an average reduction of 60% (7 kg ha- 1 ) during the historical period. CC resulted in a 6% (27 mm) reduction in total water in soil profile (140 cm) and 22% (27 mm) reduction in plant available water compared to no cover crop during historical period. CC reduced cumulative seasonal surface runoff/soil evaporation and increased the rate of soil organic carbon buildup. This research provides valuable information on how changes in climate can impact the performance of cereal rye CC in continuous corn production and should be scaled to wider locations and CC species.


Assuntos
Agricultura , Solo , Agricultura/métodos , Zea mays , Nebraska , Carbono/análise , Produtos Agrícolas , Canadá , Grão Comestível/química , Grão Comestível/metabolismo , Mudança Climática , Secale/metabolismo , Água
13.
Int J Food Microbiol ; 410: 110513, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38043376

RESUMO

Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.


Assuntos
Lactobacillales , Saccharomyces cerevisiae , Fermentação , Saccharomyces cerevisiae/metabolismo , Secale/química , Secale/microbiologia , Pão/microbiologia , Acrilamidas/metabolismo , Farinha/microbiologia
14.
J Hazard Mater ; 464: 132956, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976853

RESUMO

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Assuntos
Alumínio , Secale , Secale/genética , Secale/metabolismo , Alumínio/toxicidade , Malatos/metabolismo , Malatos/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Folhas de Planta/metabolismo , Açúcares
15.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153293

RESUMO

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Assuntos
Ascomicetos , Secale , Secale/genética , Resistência à Doença/genética , Triticum/genética , Proteínas de Repetições Ricas em Leucina , Ascomicetos/fisiologia , Nucleotídeos , Cromossomos de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
16.
J Therm Biol ; 119: 103771, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134538

RESUMO

The primary aim of this study was to assess the impact of liquid (S-LAB) and lyophilized (L-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria on broilers experiencing heat stress. The study involved 240 broiler chicks divided into six groups. These groups included a negative control (Control) with broilers raised at a normal temperature (24 °C) on a basal diet, and positive control groups (S-LAB and L-LAB) with broilers under normal temperature receiving a lactic acid bacteria supplement (0.5 mL/L) from rye-grass in their drinking water. The heat stress group (HS) comprised broilers exposed to cyclic heat stress (5-7 h per day at 34-36 °C) on a basal diet, while the heat stress and probiotic groups (S-LAB/HS and L-LAB/HS) consisted of broilers under heat stress supplemented with the rye-grass-derived lactic acid bacteria. Results indicated that heat stress without supplementation (HS) led to reduced body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increased feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels. Heat stress also negatively impacted cecal microbiota, decreasing lactic acid bacteria (LABC) while increasing E. coli and coliform bacteria (CBC) counts. Probiotic supplements (S-LAB/HS and L-LAB/HS) mitigated these effects by enhancing broilers' resilience to heat stress. In conclusion, rye grass-derived S-LAB and L-LAB probiotics can effectively support broiler chickens under heat stress, promoting growth, liver function, hormonal balance, gut health, and cecal microbiome ecology. These benefits are likely mediated through improved gut health.


Assuntos
Microbioma Gastrointestinal , Lolium , Probióticos , Animais , Galinhas , Secale , Escherichia coli , Probióticos/farmacologia , Suplementos Nutricionais , Resposta ao Choque Térmico , Dieta/veterinária , Ração Animal/análise , Temperatura Alta
17.
Brain Nerve ; 75(12): 1331-1333, 2023 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-38097223

RESUMO

A Pocket Full of Rye is a full-length novel featured in Agatha Christie's series, "Miss Marple." Taxine, used for murder in this novel, is an alkaloid compound isolated from parts of the yew tree other than the pulp and is based on a diterpene, with a nitrogen element incorporated as a side chain in one of its many skeletal structures. Taxine binds to sodium channels, resulting in unregulated muscle contraction and arrhythmias.


Assuntos
Alcaloides , Secale , Humanos , Canais de Cálcio , Bloqueadores dos Canais de Sódio , Cálcio
18.
PLoS One ; 18(10): e0293604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903124

RESUMO

Genetic maps provide the foundation for QTL mapping of important traits of crops. As a valuable food and forage crop, rye (Secale cereale L., RR) is also one of the tertiary gene sources of wheat, especially wild rye, Secale cereale subsp. segetale, possessing remarkable stress tolerance, tillering capacity and numerous valuable traits. In this study, based on the technique of specific-locus amplified fragment sequencing (SLAF-seq), a high-density single nucleotide polymorphism (SNP) linkage map of the cross-pollinated (CP) hybrid population crossed by S. cereale L (female parent) and S. cereale subsp. segetale (male parent) was successfully constructed. Following preprocessing, the number of 1035.11 M reads were collected and 2425800 SNP were obtained, of which 409134 SNP were polymorphic. According to the screening process, 9811 SNP markers suitable for constructing linkage groups (LGs) were selected. Subsequently, all of the markers with MLOD values lower than 3 were filtered out. Finally, an integrated map was constructed with 4443 markers, including 1931 female mapping markers and 3006 male mapping markers. A major quantitative trait locus (QTL) linked with spike length (SL) was discovered at 73.882 cM on LG4, which explained 25.29% of phenotypic variation. Meanwhile two candidate genes for SL, ScWN4R01G329300 and ScWN4R01G329600, were detected. This research presents the first high-quality genetic map of rye, providing a substantial number of SNP marker loci that can be applied to marker-assisted breeding. Additionally, the finding could help to use SLAF marker mapping to identify certain QTL contributing to important agronomic traits. The QTL and the candidate genes identified through the high-density genetic map above may provide diverse potential gene resources for the genetic improvement of rye.


Assuntos
Melhoramento Vegetal , Secale , Secale/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Ligação Genética
19.
PeerJ ; 11: e15972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663276

RESUMO

Background: Phosphorus nutrition is important for obtaining high yields of crop plants. However, wheat plants are known to be almost incapable of taking up phosphorus from insoluble phosphate sources, and reduced height genes are supposed to decrease this ability further. Methods: We performed a pot experiment using Triticum durum Desf. tall spring variety LD222, its near-isogenic semidwarf line carrying Rht17 (Reduced height 17) gene, and winter rye (Secale cereale L.) variety Chulpan. The individual plants were grown in quartz sand. The phosphorus was provided either as phosphate rock powder mixed with sand, or as monopotassium phosphate solution (normal nutrition control) or was not supplemented at all (no-phosphorus control). Other nutrients were provided in soluble form. During experiment the plants were assessed using the TraitFinder (Phenospex Ltd., Heerlen, Netherlands) digital phenotyping system for a standard set of parameters. Double scan with 90 degrees turns of pots around vertical axis vs. single scan were compared for accuracy of phenotyping. Results: The phenotyping showed that at least 20 days of growth after seedling emergence were necessary to get stable differences between genotypes. After this initial period, phenotyping confirmed poor ability of wheat to grow on substrate with phosphate rock as the only source of phosphorus compared to rye; however, Rht17 did not cause an additional reduction in growth parameters other than plant height under this variant of substrate. The agreement between digital phenotyping and conventionally measured traits was at previously reported level for grasses (R2 = 0.85 and 0.88 for digital biomass and 3D leaf area vs. conventionally measured biomass and leaf area, single scan). Among vegetation indices, only the normalized differential vegetation index (NDVI) and the green leaf index (GLI) showed significant correlations with manually measured traits, including the percentage of dead leaves area. The double scan improved phenotyping accuracy, but not substantially.


Assuntos
Abuso de Maconha , Fósforo , Triticum/genética , Secale/genética , Areia , Fosfatos
20.
BMC Plant Biol ; 23(1): 441, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726665

RESUMO

BACKGROUND: Heat shock factor (HSF), a typical class of transcription factors in plants, has played an essential role in plant growth and developmental stages, signal transduction, and response to biotic and abiotic stresses. The HSF genes families has been identified and characterized in many species through leveraging whole genome sequencing (WGS). However, the identification and systematic analysis of HSF family genes in Rye is limited. RESULTS: In this study, 31 HSF genes were identified in Rye, which were unevenly distributed on seven chromosomes. Based on the homology of A. thaliana, we analyzed the number of conserved domains and gene structures of ScHSF genes that were classified into seven subfamilies. To better understand the developmental mechanisms of ScHSF family during evolution, we selected one monocotyledon (Arabidopsis thaliana) and five (Triticum aestivum L., Hordeum vulgare L., Oryza sativa L., Zea mays L., and Aegilops tauschii Coss.) specific representative dicotyledons associated with Rye for comparative homology mapping. The results showed that fragment replication events modulated the expansion of the ScHSF genes family. In addition, interactions between ScHSF proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScHSF expression was complex. A total of 15 representative genes were targeted from seven subfamilies to characterize their gene expression responses in different tissues, fruit developmental stages, three hormones, and six different abiotic stresses. CONCLUSIONS: This study demonstrated that ScHSF genes, especially ScHSF1 and ScHSF3, played a key role in Rye development and its response to various hormones and abiotic stresses. These results provided new insights into the evolution of HSF genes in Rye, which could help the success of molecular breeding in Rye.


Assuntos
Aegilops , Arabidopsis , Secale/genética , Filogenia , Resposta ao Choque Térmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...